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The quantum Zeno effect is the inhibition of transitions between quantum states by

frequent measurements of the state. The inhibition arises because the measurement

causes a collapse (reduction) of the wave-function. If the time between measurements

is short enough, the wave-function usually collapses back to the initial state. We have

observed this effect in an rf transition between two 9Be+ ground-state hyperfine lev-

els. The ions were confined in a Penning trap and laser cooled. Short pulses of light,

applied at the same time as the rf field, made the measurements. If an ion was in

one state, it scattered a few photons; if it was in the other, it scattered no photons.

In the latter case the wave-function collapse was due to a null measurement. Good

agreement was found with calculations.
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I. INTRODUCTION

The quantum Zeno effect (or paradox) is the inhibition of transitions between quantum
states by frequent measurements.1−7 Misra and Sudarshan1 were the first to call the effect
by that name, but closely related work was done much earlier.8

Consider the decay of an unstable state, such as an unstable particle. An observation that
the state has not decayed causes a collapse (reduction) of the wave-function to the undecayed
state. The probability that the state decays after this collapse grows quadratically with time,
for short enough times. Suppose n measurements, spaced in time by T/n, are made. The
probability that the state will survive for a time T goes to 1 in the limit n → ∞. Hence,
Misra and Sudarshan argued, a continuously observed state can never decay.1 This effect is
difficult to observe in spontaneous decay because the interval during which the probability
grows quadratically is very short compared to the time required to make a measurement.
Ghirardi et al.3 have shown, by general arguments based on the time-energy uncertainty
relations, that the dependence of the lifetime on the frequency of measurements, although
present in principle, would be extremely difficult to observe. Deviations from an exponential
decay law, expected theoretically for very short and very long times, have not yet been
observed experimentally.9

The term “quantum Zeno effect” is applied also to the inhibition of induced transitions
by frequent measurements. This effect can easily be observed experimentally, in contrast to
the inhibition of spontaneous transitions. Consider a system made up of two levels, labeled
1 and 2. Assume that the system can be driven from level 1 to level 2 by applying a resonant
perturbation for a given length of time. Assume that it is possible to make measurements
of the state of the system, which project the system into one of the two levels, and which
take a negligible amount of time. If the system is initially in level 1, and we make n equally
spaced measurements while the perturbation is applied, the probability of finding the system
in level 2 at the end of the period decreases as n increases. Various cases of this type have
been examined theoretically.10−12

II. THEORY

Cook12 proposed an experiment on a single, trapped ion to demonstrate the quantum
Zeno effect on an induced transition. Trapped ions provide very clean systems for testing
calculations of the dynamics of quantum transitions. They can be observed for long periods,
free from perturbations and relaxations. Their levels can be manipulated easily with rf and
optical fields.

In Cook’s proposed experiment, the ion was assumed to have the level structure shown
in Fig. 1. Level 1 is the ground state. Level 2 is an excited metastable state. Spontaneous
decay from level 2 to level 1 is assumed to be negligible. If the ion is in level 1 at time
τ = 0, and a perturbation having the resonance frequency (E2−E1)/h̄ is applied, a coherent
superposition state is created. Let P1 and P2 be the probabilities for the ion to be in levels
1 and 2. Then P2(τ) = sin2(Ωτ/2) and P1(τ) = cos2(Ωτ/2), where Ω, the Rabi frequency,
is proportional to the amplitude of the applied field. If a measurement of the state of the
ion is made after a short time, such that Ωτ � 1, then P1(τ) ≈ 1 and P2(τ) ≈ 1

4
Ω2τ2 � 1.
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If, instead, the ion starts out in level 2, the situation is reversed, so that P2(τ) ≈ 1 and
P1(τ) ≈ 1

4
Ω2τ2.

Assume that level 3 is connected by a strongly allowed transition to level 1 and that
it can decay only to level 1. The state measurement is carried out by driving the 1 → 3
transition with an optical pulse. This pulse causes a collapse of the wave-function. The
wave-function of the ion is projected by the measurement into level 1 or 2 with probabilities
equal to the squares of the wave-function amplitudes for being in level 1 or 2. If the ion
is projected into level 1 at the beginning of the pulse, it cycles between level 1 and level
3, and emits a series of photons until the pulse is turned off. If it is projected into level 2,
it scatters no photons. The latter case is an example of what Porrati and Putterman have
called a wave-function collapse due to a null measurement.13 That is, the absence of scattered
photons when the optical pulse is applied is enough to cause a collapse of the wave-function
to level 2. The pulse must be long enough so that an ion in level 1 would have time to scatter
a few photons. It does not matter whether a switched-on detector capable of detecting the
photons is actually present. The state of the ion is recorded in the electromagnetic field.
The measurement (and the subsequent wave-function collapse) takes place after the field
has interacted with the ion for a sufficient amount of time.12,14 If a measurement finds the
ion to be in level 1, the ion returns to level 1 after the end of the measurement, within a
time approximately equal to the lifetime of level 3. If a measurement finds the ion to be
in level 2, the ion never leaves that level during the measurement. If this measurement is
followed immediately by a second one, the result will almost always be the same. Thus the
optical pulses make nearly ideal, nondestructive measurements. However, since a finite time
is required to make a measurement, the wave-function can evolve between measurements.
Therefore, it is possible for the result of the second measurement to differ from that of the
first.

Cook’s proposed experiment was to drive the 1 → 2 transition with an on-resonance π
pulse (a square pulse of duration T = π/Ω) while simultaneously applying a series of short
measurement pulses. The duration of a measurement pulse was assumed to be much less
than the time between pulses. Suppose the ion is in level 1 at time τ = 0. The π pulse is
then applied. Without the measurement pulses, the probability P2(T ) to be in level 2 at
τ = T is 1. Let n measurement pulses be applied at times τ = kT/n = kπ/(nΩ), where
k = 1, . . . , n. The level populations at the end of the π pulse are easily calculated with
the use of the vector representation of a two-level system.15 The equations simplify if we
transform to a coordinate system in which the rotating component of the rf perturbation
is stationary. (We ignore the counter-rotating component.) The system is described by a
vector R ≡ (R1, R2, R3), whose components can be expressed in terms of the density matrix
ρ:

R1 ≡ ρ12 + ρ21,

R2 ≡ i(ρ12 − ρ21), (1)

R3 ≡ ρ22 − ρ11 ≡ P2 − P1.

The equation of motion for R is

dR/dt = ω×R, (2)
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where ω = (Ω, 0, 0). The geometrical interpretation of Eq. (2) is that R precesses about ω
with fixed magnitude and angular velocity |ω| = Ω. At τ = 0, R = (0, 0,−1). Just before
the first measurement pulse at τ = π/(nΩ),

R = [0, sin(Ωτ),− cos(Ωτ)]

= [0, sin(π/n),− cos(π/n)]. (3)

The measurement pulse projects an ion into level 1 or 2. Its effect on the density matrix,
which corresponds to an ensemble average, is to set the coherences (ρ12 and ρ21) to zero,
while leaving the populations (ρ22 and ρ11) unchanged. Hence, R1 and R2 are set to zero,
while R3 remains unchanged:

R = [0, 0,− cos(π/n)]. (4)

Thus, at τ = π/(nΩ), just after the first measurement pulse, R is the same as it was at
τ = 0, except that its magnitude has been decreased by a factor of cos(π/n). After the second
measurement [τ = 2π/(nΩ)], |R| is decreased by another factor of cos(π/n). This follows
from the fact that Eq. (2) is linear with respect to R. After n measurements, (τ = π/Ω),

R(T ) = [0, 0,− cosn(π/n)]. (5)

We use Eq. (1) to express P2 in terms of R3 :

P2 = R3 + P1 = R3 + (1− P2)

= 1
2
(1 +R3). (6)

In deriving Eq. (6), we used the conservation of probability for a closed two-level system:
P1 + P2 = 1. Substituting the value of R3(T ) from Eq. (5) into Eq. (6), we have

P2(T ) = 1
2
[1− cosn(π/n)]. (7)

It can be shown from Eq. (7) that P2(T ) decreases monotonically toward zero as n goes to
infinity. For large n,12

P2(T ) ≈ 1
2
[1− exp(−1

2
π2/n)]. (8)

Equation (8) was derived from Eq. (7) by expanding cos(π/n) in a power series and using

lim
n→∞

(1− x/n)n = e−x. (9)

III. EXPERIMENT

Our experiment is very similar to that proposed by Cook. Levels 1 and 2 are the (mI , mJ)
= (3

2
, 1

2
) and (1

2
, 1

2
) hyperfine sublevels in the ground 2s 2S1/2 state of 9Be+ (see Fig. 2). These

levels are separated by 320.7 MHz at the magnetic field used in the experiment (B ≈ 0.8194
T). Level 3 is the (mI = 3

2
, mJ = 3

2
) sublevel of the 2p 2P3/2 state, which decays only to

level 1. Spontaneous decay from level 2 to level 1 is negligible.
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The experimental apparatus has been described previously.16−18 About 5000 9Be+ ions
were stored in a cylindrical Penning trap. The pressure in the trap was about 10−8 Pa. The
storage time of the ions in the trap was several hours. A frequency-doubled cw dye laser
generated 313-nm radiation to drive the 1→ 3 transition in order to optically pump, detect,
and laser cool the 9Be+ ions. The 313-nm fluorescence from the ions was detected by an
imaging photon-counting detector.16 About 100 000 26Mg+ ions were confined together with
the 9Be+ ions. The 26Mg+ ions were laser-cooled by 280 nm radiation from a frequency-
doubled cw dye laser. The 9Be+ were kept cold (

<∼ 250 mK) by long-range Coulomb collisions
with the 26Mg+ ions even when they were not directly laser-cooled by the 313-nm source.19

The polarization of the 313-nm beam was perpendicular to the magnetic field. When the
313-nm radiation was nearly resonant with the 1→ 3 transition and no rf field was applied,
about 16

17
of the population was optically pumped to the (3

2
, 1

2
) ground-state sublevel (level

1).20−22 The remaining population was in the (3
2
, −1

2
) sublevel. When the 313-nm radiation

was on continuously, the populations approached the steady state with a time constant of
about 1 s.

The measurement sequence for the 1→ 2 transition was as follows: The 313-nm radiation
was left on for about 5 s to prepare most of the 9Be+ ions in level 1 and to empty level 2. The
313-nm radiation was then turned off. The 320.7-MHz rf field was turned on for T = 256 ms.
Its frequency and amplitude were adjusted to make this an on-resonance π pulse. During the
rf pulse, n pulses of length τp = 2.4 ms and wavelength 313-nm were applied, where n was
1, 2, 4, 8, 16, 32, or 64. The pulses were long enough to collapse each ion’s wave-function
without causing significant optical pumping. The delay from the beginning of the rf pulse to
the beginning of the first 313-nm pulse was (T/n−1.3) ms. The time between the beginning
of one 313-nm pulse and the beginning of the next one was T/n.

After the end of the rf π pulse, the 313-nm radiation was turned on and left on to prepare
the state. The number of photons counted in the first 100 ms was recorded. This signal
was roughly proportional to the number of ions remaining in level 1. However, background
counts, counter deadtime, and optical pumping during the 100 ms cause deviations from
this proportionality. In order to calibrate the signal, known level populations were created
by applying rf pulses of lengths τ = 0, 32, 64, . . . , 544 ms. The population of level 1 (per ion
in the subsystem made up of levels 1 and 2) was then given by cos2(Ωτ/2). From these data,
the precise value of Ω and also the calibration of the signal as a function of the population
of level 1 were obtained. The deviations of the calibration points from a smooth curve gave
an indication of the measurement errors.

The 313-nm radiation was turned on and off with an electromechanical shutter that had
a rise or fall time of about 0.2 ms. The 320.7-MHz rf field was turned on and off with a
semiconductor diode switch, which had a switching time of about 150 ns and an on-to-off
ratio of about 75 dB. The 280-nm beam was left on continuously. The measurement sequence
was the same for the 2 → 1 transition, except that first an rf π pulse, free from 313-nm
pulses, transferred the level 1 population to level 2 immediately after the 313-nm radiation
was shut off.

The 1→ 2 transition frequency decreases by 22 Hz for a 1-µT increase in B. If the tran-
sition frequency shifts by more than a small fraction of 1/T ≈ 4 Hz, the observed transition
probabilities will deviate significantly from the calculated ones. The center frequency of the
1→ 2 resonance was measured before and after each run. If the frequency shifted by more
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than about 0.1 Hz, the data from that run were not used. Drift of the magnetic field was
the main obstacle to increasing T . Relaxations of the ground-state hyperfine levels are very
weak when the 313-nm radiation is not applied. This was shown in studies of the (mI , mJ)
=(−1

2
, 1

2
) to (−3

2
, 1

2
) transition. The derivative of this transition frequency with respect

to B goes to zero at B ≈ 0.8194 T. At this value of B, weak relaxation processes due, for
example, to collisions or to the 280-nm radiation can be studied. This transition showed no
sign of population or coherence relaxations for times up to 550 s.17

The average number of photons scattered by an ion in level 1 during a single 313-nm
pulse of length τp is approximately τpRc/(εdN), where Rc is the observed steady-state photon
count rate, εd is the probability of detecting a scattered photon, and N is the total number
of 9Be+ ions. The photon detection efficiency εd was estimated from the solid angle of the
lens system and the quantum efficiency of the detector to be about 2 × 10−4. For typical
experimental values τp = 2.4 ms, Rc = 30 000 s−1, and N = 5000, the number of scattered
photons per ion per pulse was therefore about 72, more than enough to cause the collapse
of the wave-function. We emphasize that it is the number of scattered photons which is
important, not the number that can be detected by the apparatus. The number of photons
detected per ion per pulse is much less than 1. As a further check that the pulses were long
enough, some runs were taken with τp decreased to 1.4 ms (the shortest that the shutter
could make). The results indicated that these pulses were still long enough to collapse the
wave-functions. These data are not reported here because the pulse shapes were not the
same for different pulse repetition rates. This made quantitative interpretation of the data
difficult.

With a faster optical shutter, such as an acousto-optic modulator, the 313-nm pulses
could be decreased in length and still be long enough to collapse the wave-functions. How-
ever, the minimum time required for a measurement pulse depends not only on the average
photon scattering rate, but also on the time required to ensure that every ion will pass
through the 313-nm beam. The 9Be+ ions occupied a cylindrical volume with a height of
about 1000 µm and a radius of about 350 µm. The 313-nm beam was focused to a radius
of about 50 µm. It propagated perpendicular to the axis of the cylinder and intersected
the 9Be+ ions near the center of the volume. If the 313-nm beam were expanded radially
and directed along the axis, so that it intersected the entire volume, this problem could be
avoided.

IV. RESULTS

Table I shows the calculated and observed values of the probabilities of making the
1 → 2 and 2 → 1 transitions for values of n = 1, 2, . . . , 64. The predicted and observed
values agree within the measurement error of about 0.02 estimated from the scatter of the
signal calibration data. The general decrease of the probabilities with n demonstrates the
quantum Zeno effect. Probabilities must take values from 0 to 1. However, with our method
of determining the transition probability, random fluctuations in the photon count rate can
lead to an apparent transition probability which is less than zero or greater than 1. The
value of −0.006 for the observed 1→ 2 transition probability for n = 64 just means that the
number of photons detected was slightly higher than the number expected for a transition
probability of 0. Figures 3 and 4 show the probabilities for the 1→ 2 and 2→ 1 transitions,
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respectively.
The assumptions made in the calculations are as follows: When the rf field is present

and the 313-nm radiation is not, the transition between levels 1 and 2 is assumed to proceed
without relaxations. During the 313-nm pulses, the coherence between levels 1 and 2 is
assumed to be destroyed so quickly that the rf field can be ignored. The 313-nm radiation
causes optical pumping from level 2 to level 1 with a time constant of about 1 s. This rate
was measured by using an rf π pulse to prepare the ions in level 2, turning on the 313-nm
radiation, and recording the 313-nm fluorescence as a function of time. Optical pumping by
the 313-nm pulses can have an observable effect on the measured transition probabilities,
especially for large n. This optical pumping causes a decrease in the 1 → 2 transition
probability and an increase in the 2→ 1 transition probability. The decrease in the 1→ 2
transition probability is not noticeable in our data, since the transition probability is already
small for large n. The increase in the 2→ 1 transition probability is noticeable for n = 32
and 64. The predicted transition probabilities shown in Table I and plotted in Figs. 3 and
4 take into account optical pumping, the finite 313-nm pulse durations, and the measured
value of Ω. The measured value of Ω differed by less than 3% from the ideal value Ω = π/T .
For comparison, 1

2
[1 − cosn(π/n)], the transition probability calculated if these effects are

not included, is also shown in Table I.
For the larger values of n, the sum of the measurement periods, nτp, is not negligible

compared to T . Therefore, part of the decrease in the transition probability is due merely to
the decrease in the time during which rf field can act. For the most extreme case (n = 64)
nτp is 60% of T . However, even for this case, the decrease in the transition probability is
much more than could be accounted for by the decrease in time. For n = 16, nτp is only
15% of T , but the transition probability is decreased by about 90%.

V. DISCUSSION

Cook12 originally proposed an experiment with a single ion. Such an experiment should
be feasible, since single ions have been observed in Penning traps21,23 and in Paul traps.24,25

The ensemble average, which is needed for comparison with calculations of the density ma-
trix, would be obtained by repeating the experiment many times. In the present experiment,
each measurement is an average over an ensemble of about 5000 independent ions, since their
mutual interactions can be neglected. An experiment might be done with a single Hg+ ion.
Level 1 would be the ground 5d106s 2S1/2 state, level 2 would be the metastable 5d96s2 2D5/2

state, and level 3 would be the 5d106p 2P1/2 state. The 1→ 2 transition at 282 nm and the
1→ 3 transition at 194 nm have already been observed in a single Hg+ ion.25

It might be argued that previous observations of effects such as collisional relaxation of
rf transitions already contain the quantum Zeno effect. This is possible, but we know of no
experiment in which the effect has been demonstrated simply and unambiguously. Collisions
cannot usually be interpreted as quantum measurements. That is, they do not necessarily
project a single quantum system, such as an atom, into one state or the other. Rather, in
many cases, they perturb the phase of the coherence, represented by R1 and R2 in the vector
model, for each system. For the ensemble average, R1 and R2 are driven to zero, just as
in our experiment, but the underlying physics is different. Collisions may also perturb R3,
which is not desirable for a demonstration of the quantum Zeno effect.
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Some experiments that involve continuous measurements have, in a sense, already demon-
strated the quantum Zeno effect. Although the measurements are continuous, it takes a finite
amount of time to make a measurement with a given degree of uncertainty. Thus a contin-
uous measurement might be regarded as a series of measurements, one after the other. In
such experiments, the measurement times are not separated from the free evolution peri-
ods, so the analysis is more difficult than for the present experiment. One example of such
an experiment is the spin flip resonance of a single, trapped electron.10 The spin state is
detected by coupling the electron to an electronic circuit. As the time required to make a
measurement is decreased by increasing the degree of coupling, noise broadens the spin-flip
resonance. This broadening decreases the rate of transitions induced by a weak microwave
field. Another example is the three-level Hg+ system described previously.25 Radiation res-
onant with the 5d106s 2S1/2 to 5d106p 2P1/2 (1→ 3) transition performs a continuous state
measurement. Photons are not scattered if the ion is in the 5d96s2 2D5/2 state (level 2);
otherwise they are. We have observed a decrease of the rate of the 1→ 2 transition, induced
by a narrow-band laser, when radiation at the 1→ 3 transition frequency is applied.

Normally, the probability for spontaneous emission of a photon by an atom grows
quadratically only for extremely short times, approximately the inverse of the frequency
of the emitted photon. However, it might be possible to increase this time by placing the
atom inside a resonant cavity. Jaynes and Cummings26 showed that a two-level atom cou-
pled to a single mode of a resonant, lossless cavity oscillates between the ground and excited
states. Suppose an excited atom is placed in a cavity that initially contains no photons.
Then the probability for the atom to be in the excited state is cos2(gτ), where g is the
coupling constant (the vacuum field Rabi frequency) and τ is the time that the atom has
been in the cavity. The probability for the atom to be in the ground state is proportional
to τ2 for τ short compared to g−1.

If the atom is coupled to a single damped cavity mode, the probability to be in the
ground state is still proportional to τ2, provided that τ is short compared to both g−1 and
γ−1
c , where γc is the dissipation rate of the cavity.27 It might be possible to demonstrate the

quantum Zeno effect on the decay of an atom in a cavity. This would not contradict the
results of Ghirardi et al.,3 since they did not consider such a system.
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FIGURES

FIG. 1.

Energy-level diagram for Cook’s proposed demonstration of the quantum Zeno effect.

FIG. 2.

Diagram of the energy levels of 9Be+ in a magnetic field B. The states labeled 1, 2, and 3 correspond

to those in Fig. 1
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FIG. 3.
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Graph of the experimental and calculated 1 → 2 transition probabilities as a function of the

number of measurement pulses n. The decrease of the transition probabilities with increasing n

demonstrates the quantum Zeno effect.
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FIG. 4.
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Graph of the experimental and calculated 2→ 1 transition probabilities as a function of the number

of measurement pulses n. The transition probabilities for n = 32 and n = 64 are higher than the

corresponding ones for the 1→ 2 transition because of an optical pumping effect discussed in the

text.
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TABLES

TABLE I. Predicted and observed values of the 1 → 2 and 2 → 1 transition probabilities

for different values of the number of measurement pulses n. The uncertainties of the observed

transition probabilities are about 0.02. The second column shows the transition probabilities that

result from a simplified calculation, in which the measurement pulses are assumed to have zero

duration and in which optical pumping is neglected.

1→ 2 transition 2→ 1 transition

n 1
2 [1− cosn(π/n)] Predicted Observed Predicted Observed

1 1.0000 0.995 0.995 0.999 0.998

2 0.5000 0.497 0.500 0.501 0.496

4 0.3750 0.351 0.335 0.365 0.363

8 0.2346 0.201 0.194 0.217 0.209

16 0.1334 0.095 0.103 0.118 0.106

32 0.0716 0.034 0.013 0.073 0.061

64 0.0371 0.006 −0.006 0.080 0.075
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